Ebp1-mediated inhibition of cell growth requires serine 363 phosphorylation.
نویسندگان
چکیده
Ebp1 is an ErbB3 binding phosphoprotein with pleiotropic effects. Overexpression of Ebp1 represses transcription of E2F1 responsive cell cycle regulated genes and inhibits cell growth. However, the effect of phosphorylation on Ebp1-mediated transcriptional repression and cell growth inhibition is currently unknown. In this study, we show that serine 363 (S363) of Ebp1 is phosphorylated in vivo. Although total Ebp1 is located in the nucleus, organelles and the cytoplasm, Ebp1 phosphorylated at S363 (Ebp1 pS363) is localized exclusively to the nucleus. Mutation of S363 to alanine did not change the subcellular localization of Ebp1. However, the S363A mutation significantly decreased the ability of Ebp1 to repress transcription and abrogated its ability to inhibit cell growth. We have previously shown that Ebp1 can bind the E2F1 promoter in vitro and in vivo as part of a protein complex and that Ebp1-transcriptional repression is mediated via its interaction with the co-repressors HDAC2 and mSin3a present in this complex. Although Ebp1 S363A interacted with an E2F1 promoter element, it did not bind HDAC2 and mSin3a. These results indicate the importance of S363 phosphorylation in the function of Ebp1.
منابع مشابه
Nuclear Akt associates with PKC-phosphorylated Ebp1, preventing DNA fragmentation by inhibition of caspase-activated DNase.
Akt promotes cell survival through phosphorylation. The physiological functions of cytoplasmic Akt have been well defined, but little is known about the nuclear counterpart. Employing a cell-free apoptotic assay and NGF-treated PC12 nuclear extracts, we purified Ebp1 as a factor, which contributes to inhibition of DNA fragmentation by CAD. Depletion of Ebp1 from nuclear extracts or knockdown of...
متن کاملVGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملEbp1 isoforms distinctively regulate cell survival and differentiation.
Ebp1, an ErbB3 receptor-binding protein, inhibits the proliferation and induces the differentiation of human cancer cells. Ebp1 binds nuclear Akt and prevents DNA fragmentation by inhibiting caspase-activated DNase. Here, we show that Ebp1 possesses two different isoforms, p48 and p42, which differentially mediate PC12 cell survival and differentiation. The longer-form p48 localizes in both the...
متن کاملSerine 363 is required for nociceptin/orphanin FQ opioid receptor (NOPR) desensitization, internalization, and arrestin signaling.
We determined the role of carboxyl-terminal regulation of NOPR (nociceptin, orphanin FQ receptor) signaling and function. We mutated C-terminal serine and threonine residues and examined their role in NOPR trafficking, homologous desensitization, and arrestin-dependent MAPK signaling. The NOPR agonist, nociceptin, caused robust NOPR-YFP receptor internalization, peaking at 30 min. Mutation of s...
متن کاملEBP1, an ErbB3-binding protein, is decreased in prostate cancer and implicated in hormone resistance.
Aberrant activation of the androgen receptor (AR) by the ErbB2/ErbB3 heterodimer contributes to the development of hormone resistance in prostate cancer. EBP1, an ErbB3-binding protein, acts as an AR corepressor. As EBP1 is decreased in preclinical models of hormone-refractory prostate cancer, we studied the expression of EBP1 in human prostate cancer. We found that the expression of the EBP1 g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of oncology
دوره 31 4 شماره
صفحات -
تاریخ انتشار 2007